Sturgeon osteocalcin shares structural features with matrix Gla protein: evolutionary relationship and functional implications.

نویسندگان

  • Carla S B Viegas
  • Dina C Simes
  • Matthew K Williamson
  • Sofia Cavaco
  • Vincent Laizé
  • Paul A Price
  • M Leonor Cancela
چکیده

Osteocalcin (OC) and matrix Gla protein (MGP) are considered evolutionarily related because they share key structural features, although they have been described to exert different functions. In this work, we report the identification and characterization of both OC and MGP from the Adriatic sturgeon, a ray-finned fish characterized by a slow evolution and the retention of many ancestral features. Sturgeon MGP shows a primary structure, post-translation modifications, and patterns of mRNA/protein distribution and accumulation typical of known MGPs, and it contains seven possible Gla residues that would make the sturgeon protein the most γ-carboxylated among known MGPs. In contrast, sturgeon OC was found to present a hybrid structure. Indeed, although exhibiting protein domains typical of known OCs, it also contains structural features usually found in MGPs (e.g. a putative phosphorylated propeptide). Moreover, patterns of OC gene expression and protein accumulation overlap with those reported for MGP; OC was detected in bone cells and mineralized structures but also in soft and cartilaginous tissues. We propose that, in a context of a reduced rate of evolution, sturgeon OC has retained structural features of the ancestral protein that emerged millions of years ago from the duplication of an ancient MGP gene and may exhibit intermediate functional features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of gene expression pattern of matrix gla protein and Bone gla protein as skeletogenesis markers in Persian sturgeon (Acipenser persicus Bordin, 1897)

Bone gla protein and matrix gla protein are of common origin with evolutionary relation and have similar structural features and are functional in the formation of skeletal structures The present study have been evaluated the genes encoding vitamin k-dependant proteins (VKDPs) expression at hatching time (0), 1, 3, 6, 10, 12,14, 20, 30 and 50 in skeletal Persian sturgeon sturgeon (Acipenser per...

متن کامل

Presence of osteocalcin and related higher molecular weight 4-carboxyglutamic acid-containing proteins in developing bone.

Development of a sensitive radioimmunoassay for the vitamin K-dependent bone protein osteocalcin in avian species has provided new information on the biosynthesis of this protein in bone. Chicken osteocalcin shares many structural features, including the sequence positions of its 3 gamma-carboxyglutamic acid (Gla) residues, with osteocalcins of human, monkey, cow, and rat, but is cryptic in the...

متن کامل

Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques.

In the present study, we examined the expression of regulators of bone formation and osteoclastogenesis in human atherosclerosis because accumulating evidence suggests that atherosclerotic calcification shares features with bone calcification. The most striking finding of this study was the constitutive immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein in nondiseased ao...

متن کامل

Vitamin K: the coagulation vitamin that became omnipotent.

Vitamin K, discovered in the 1930s, functions as cofactor for the posttranslational carboxylation of glutamate residues. Gammacarboxy glutamic acid (Gla)-residues were first identified in prothrombin and coagulation factors in the 1970s; subsequently, extra-hepatic Gla proteins were described, including osteocalcin and matrix Gla protein (MGP). Impairment of the function of osteocalcin and MGP ...

متن کامل

Cloning of the bone Gla protein gene from the teleost fish Sparus aurata. Evidence for overall conservation in gene organization and bone-specific expression from fish to man.

Bone Gla protein (BGP, Osteocalcin) is a bone-specific vitamin K-dependent protein which has been intensively studied in mammals. Although BGP is the most abundant non-collagenous protein of bone, its mode of action at the molecular level remains unclear. From an evolutionary point of view, the appearance of BGP seems to parallel the appearance of hydroxyapatite-containing bone structures since...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 39  شماره 

صفحات  -

تاریخ انتشار 2013